## Evalutation of "P-recovery" toolkit

based on Wetsus research









## PHOSPHORUS recovery

we tested the feasibility of recovery phosphorus

from <u>synthetic</u> urine as

STRUVITE NH<sub>4</sub>MgPO<sub>4</sub>.6H<sub>2</sub>O







#### SYNTHETIC URINE RECIPE

| compound                       | FORMULA                          | MM      | Concentration g/L | g for 500mL |
|--------------------------------|----------------------------------|---------|-------------------|-------------|
| Urea                           | CH <sub>4</sub> N <sub>2</sub> O | 60,062  | 25                | 12,5        |
| Sodium chloride                | NaCl                             | 58,44   | 4,6               | 2,3         |
| Potassium dihydrogen phosphate | KH <sub>2</sub> PO <sub>4</sub>  | 136,086 | 4,2               | 2,1         |
| Potassium chloride             | KCI                              | 75      | 1,6               | 1,3         |







## PHOSPHORUS recovery

 When enzyme urease is added to the urine causes the conversion of urea into ammonia with increasing of the pH of the solution

$$(NH_2)_2CO(aq) + H_2O(I) \boxtimes CO_2(g) + 2NH_3(g)$$

$$NH_3(g) + H_2O(I)$$
  $\square$   $NH_4^+OH^-(aq)$ 







# enzyme urease from soybeans

Hydrated soybeans were mashed with a pestle

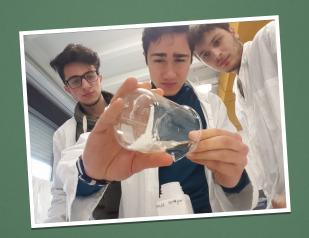
and a mortar

added to the solution

- The pH of the solution become more than 10










## Struvite precipitation

- The solution was filtered and MgSO<sub>4</sub> was added to the solution







the suspension obtained was filtered and air dried







#### Struvite as fertilizer



1 week



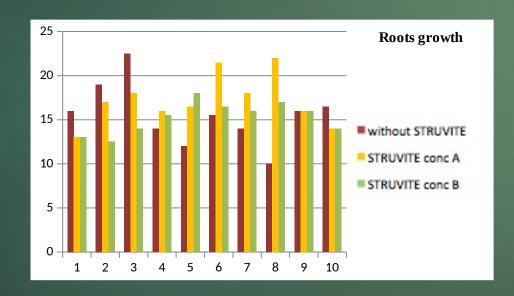
2 week

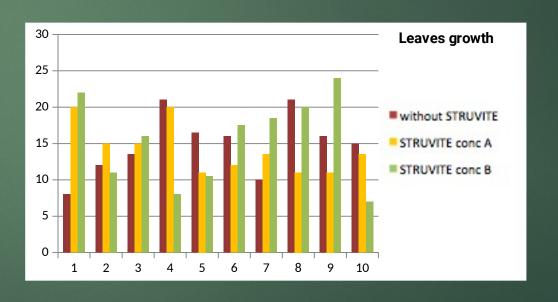


3 week



4 week






#### Struvite as fertilizer: results

- We studied the growth of roots and the growth of leaves with two concentration of struvite and without struvite as control
- there isn't a significative difference in the plants growth but plants with struvite grew a little more



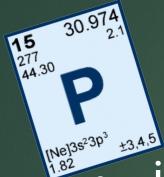








### What we have learnt:


waste products contain valuable and useful compounds

 importance of nutrients recovery from urine: phosphate and nitrogen









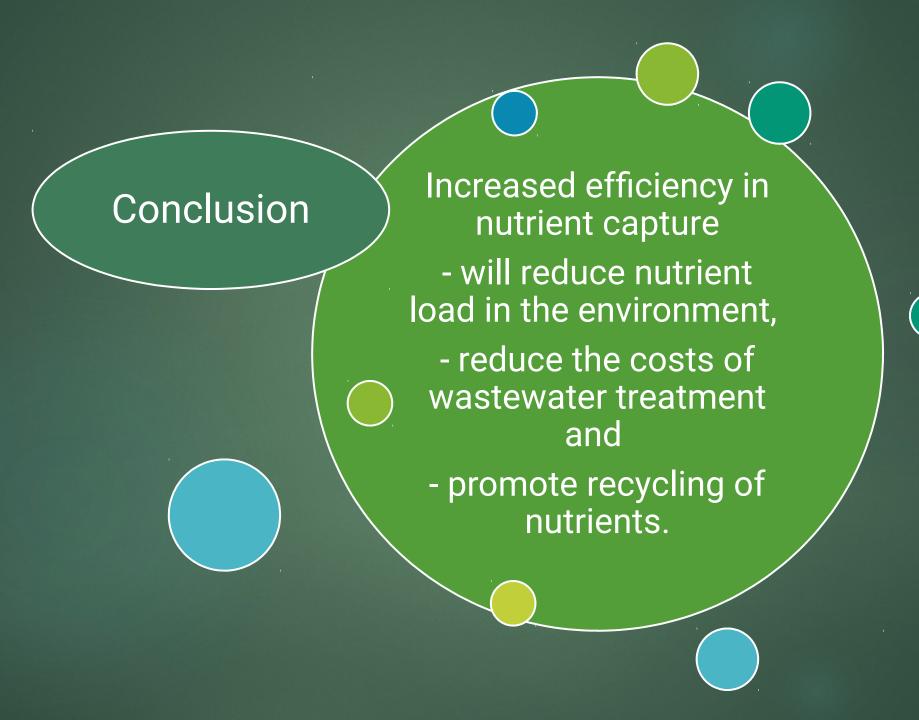
#### **PHOSPHORUS**

- is an indispensable element for plants and animal life
- is a part of the DNA and RNA
- is important for energy transfer in cells as part of ATP (adenosine triphosphate)
- is found in Nature as phosphate in mineral rocks








#### PHOSPHORUS

- in the 2014 phosphate rocks were included in Critical Raw Materials by EC
- stocks will run out in about 100 years
- recovering from mines is finite
- demand will increase by the strong growth of the world population









# Thanks!

CLASSE 4<sup>A</sup>L