

Process chains in recycling

A brief story of an old TV

Collection

- Old electronic devices are collected locally
- Unlike houshold waste materials they are not picked up directly at home
- Collection systems provide the first chance to separate waste streams

Dismantling and shredding

- Dismantling is always the first step in processing larger pieces
 - Larger building blocks can be separated
 - Assortation for the steps to follow
 - Exclusion of toxins etc. possible
- The large pieces from the dismantling process are broken down to a smaller size by shredding

RAM@Schools

Shredding

Keystep: Separation of different grain sizes (sieving)

 Standardization of grain size is of crucial importance for the processes to follow

Gemisch

Grobfraktion

Feinfraktion

Types of sieves

Separation in the gravitation field

 Particles are devided by their sinking/floating behaviour in fluids (air, water, etc.)

Film

Separation in magnetic fields

- A magnet is used to pick ferromagnetic materials from the waste stream
- i.e. low alloyed steel, Cr-steel, Ni-Cu-alloys (> 65% Ni), cast iron

Film

Separation in electromagnetic fields

- Eddy-current separators separaty by the conductivity/density ratio
- Basicly conductors are separated from non-conductors
- Grain sizes > 5mm needed
- Absence of ferromagnetic materials is necessary
- Electromagnetic field is induced in conductive grains
 - Repulsion of this material
- Film

A: Leitfähigkeit / Dichte gering B: Leitfähigkeit / Dichte hoch

g

Other separation techniques

What happened until now?

- Collection systems provide a first separation step
- Dismantling and exctraction of toxic materials are important for further processing
- Shredders and mills are used to break different materials appart
- The particles have to be assorted by their grain size (sieving) to make further separation techniques possible
- Separation steps use differences in
 - Density
 - Magnetism
 - Conductivity
 - Optical properties
 - Geometrical properties

What's next?

- After sorting the waste particles into fractions of higher content of different kind of metals
 - Pyrometallurgical processes or
 - Hydrometallurgical processes follow

Further treatment of copper – pyrometallurgical approach

- Copper containing waste is introduced into a furnace to
 - Homogenization of the metal phase
 - Concentration of valuable metals in the molten phase
 - Formation of cinders (FeO-silicate)
 - Collection of dust with ZnO, PbO
 - Treatment of exhaust gases (CO₂, hydrocarbons, SO₂, HCl)
- Copper from this processes consists typically of 75% Cu, 6% Sn, 5% Fe, 3% Ni, 5% Zn, 4% Pb
- Electro-furnaces can be used as well

Converter process

- Selective oxidation
- Extraction of Sn, Pb, Fe, Zn, Al
- Ni and RE-metals remain in the molten copper
- 95 98 % copper content

Electrolytical refining

- Requires 99 99,5 % copper content
- Outcome: 99,98% Cu

Further treatment of copper – hydrometallurgical approach

- Only usefull if copper content is rather low
- Leaching
 - with ammoniumcarbonate/ammonia (Cu and Ni)
 - with iron(III) sulphate (not very selective)
 - with sulfuric acid (not very selective)
- Copper recovery from aqueous solutions
 - Electolytic precipitation (reduction) requires > 15 g/L Cu
 - Cementation with metallic iron (not very selective, 60 90% Cu)
 - Thermal decomposition of Cu-tetramincomplex (regeneration of ammonia)
 - Precipitation as hydroxide or sulfide (both less favoured)

Limitations of recycling

Economical, ecological, thermodynamical

Thank you for your find attention

Treatment of cables and wires

